
SpotCheck:
On-Device Anomaly Detection for Android

Mark Vella & Christian Colombo

SINCONF 2020

2|

Overview

Problem:

Mobile devices are increasingly targeted by malware, posing privacy and
financial threats. App store and on-device scanning are however limited

mainly due to signature-based detection.

A novelty detection layer is needed.

Contributions:

1)Re-purposing of Kernel Principal Component Analysis (KPCA) and
Variational Autoencoders (VAE), as used for network anomaly detection
(AD), for Android AD

2)A novel process memory dump approach, from which to derive app
behavior, as compared to a system-call-trace baseline

3)Openly available datasets capturing benign/malicious app behaviour for
both representations

3|

State-of-the-art

App store & on-device protection
Static & dynamic analysis

Stringent permission granting Discourage unknown sources

4|

State-of-the-art

App store & on-device protection
Static & dynamic analysis

Stringent permission granting Discourage unknown sources

Malware
samples

5|

SpotCheck

Official app store

3rd party app store

Known malware
scan

Malware
Classification
(Triage)

New malware/
Evasive variant

Malware
analysis

6|

SpotCheck

Approach:

– On-device execution sampling

– Prioritize suspicious apk submission
for malware triage

– Along with the suspicious execution
trace

Official app store

3rd party app store

Known malware
scan

Malware
Classification
(Triage)

New malware/
Evasive variant

Malware
analysis

+ Anomalous
execution
trace

Execution
segment

SpotCheck:
Anomaly Detection

7|

App behavior representation i/ii

function_1()
function_2()
function_3()
…
function_n()

(Function) Call trace

Process memory

(exec side-effects)

● Process memory approach:

– Less invasive but represents only the residue of execution –
time-critical

8|

App behavior representation ii/ii

● Call trace
– Linux system call histogram

– Successfully used for malware classification

– In-line hooking on non-rooted devices is possible

● Process memory dump
– android.content.Context.getSystemService() manager class histogram

– HPROF – with android.os.Debug.dumpHprofData()

– ArtMethod→data_ patching possible On non-rooted devices is possible

● Normalization

9|

KPCA-based AD

● Premise for AD

– For learned:

– The lossy inverse transform minimizes reconstruction error
only in the case datapoints are from the same distribution of

– Returns a higher reconstruction error otherwise

Feature space Latent spaceLinearly separable

Higher dimensional space

10|

VAE-based AD

Encoder

computes

Decoder

computes

No learn­able
weights

[Stochastic]

Loss:

Feature space Latent space Feature space

● Premise for AD

– For learned : is similar to but only if is derived from

– Similarity defined in terms of a reconstruction probability

11|

Dataset

MAT

Exerciser Monkey

dumpsys

calllog

HPROF

https://github.com/mmarrkv/spotcheck_ds

2K + 1K apps

12|

Results i/ii

Dataset / AUC ROC KPCA VAE*

Android AD (calllog) 0.708 0.694

Android AD (HPROF) 0.69 0.712

NSL-KDD (DoS) 0.59 0.795

NSL-KDD (Probe) 0.821 0.944

NSL-KDD (R2L) 0.712 0.777

NSL-KDD (U2R) 0.712 0.782

* Android AD topology: 50-25-2/NLLGaussian

● Successful re-purposing from network AD (An & Cho, 2015)

– Note: Probe is particularly noisy on the network level

● KPCA-HPROF

– F1/recall/pres – 0.88/0.97/0.8

– Note 1: 0.2 imprecision results in benign apps being sent for malware triage, rather
than apps being immediately flagged as malicious

– Note 2: 0.03 non-recalled malware could in reality be offset by considering multiple
execution samples in a multi-device deployment setting

13|

Results ii/ii

● Digging deeper into Android AD using HPROF
– Latent spaces KPCA vs VAE

14|

Conclusion and Next steps

● We have shown that KPCA & VAE can work for Android AD

● The process memory approach is promising, and which in turn is conducive to
practical implementation

● Planned experimental improvements

– App behavior representation: timely memory dumps
● A meet-in-the middle with sys call traces

– AD modeling
● VAE – Supervised learning: a loss function that pushes the latent distribution

away from labeled anomalies

● Closing the loop

– Generate anomalous execution traces for malware sandbox triage to use
● Static app re-writing to mark decision points close to entry point, and handler

code
● Direct sandbox execution accordingly

Q&A

Mark.Vella@um.edu.mt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

