SpotCheck: On-Device Anomaly Detection for Android

Mark Vella & Christian Colombo L-Università ta' Malta SINCONF 2020

.

Overview

Problem:

Mobile devices are increasingly targeted by malware, posing privacy and financial threats. App store and on-device scanning are however limited mainly due to signature-based detection.

A novelty detection layer is needed.

Contributions:

- 1) Re-purposing of Kernel Principal Component Analysis (KPCA) and Variational Autoencoders (VAE), as used for network anomaly detection (AD), for Android AD
- 2) A novel process memory dump approach, from which to derive app behavior, as compared to a system-call-trace baseline
- 3) Openly available datasets capturing benign/malicious app behaviour for both representations

State-of-the-art

									8.00	*4
									← Play Pi	otect
									Vo harmful	ad apps found
Google Play	Dearth Coteprins w Hart	w tother to		9					Recently scanne	d anos:
My apps	_	_							9 A C	
Shop	Recommend	led for you						See now		e e mo
Carnes Family Editors Onice		2		2		രി	N		Apps scanned at 8	
ut		L T	-		100	<u> </u>	and a		for harmful behavi	rly checks your apps and devic ar. You'll be notified of any
ubeciptone	Messenger - To-1 - Factoria	Facebook	YouTube	Facebook Litre	Mobie Legends To Mobie	Indagram	MessengerLite Fill Facebook	Snapchat	detected security is	ssues.
un									LEARN MORE	
Sey activity et Guide	Games We're Playing									
		66	Č,	1	2		1			
	Mobie-Legence To-	Wordscapes Peoples	Cooking Madries	Toon-Baset	Homescapes Parts	Consta Rise Fire 7.	Happy-Stass Liet Dubn	Farming Simulation GANTS Software		
								····· P20500	4	•
	New & updated games									
	-3142-		0.0	-	4923	N 🔮 🚓	1 6			

App store & on-device protection

Stringent permission granting

Static & dynamic analysis

Discourage unknown sources

State-of-the-art

App store & on-device protection

....

Static & dynamic analysis

Stringent permission granting

Discourage unknown sources

SpotCheck

SpotCheck

App behavior representation i/ii

- Process memory approach:
 - Less invasive but represents only the residue of execution time-critical

App behavior representation ii/ii

- Call trace
 - Linux system call histogram
 - Successfully used for malware classification
 - In-line hooking on non-rooted devices is possible

 $x \stackrel{def}{=} < accept, access, bind, chdir, ..., writev >$

- Process memory dump
 - android.content.Context.getSystemService() manager class histogram
 - HPROF with android.os.Debug.dumpHprofData()
 - ArtMethod-data_ patching possible On non-rooted devices is possible

Normalization

$$\hat{x} \stackrel{def}{=} \langle a_i / ||x||_1, ..., a_n / ||x||_1 \rangle \qquad (||\hat{x}||_1 = 1)$$

KPCA-based AD

- Premise for AD
 - For learned: γ, W_2
 - The lossy inverse transform $X_n = Z_2 \cdot W_2^T$ minimizes reconstruction error only in the case datapoints are from the same distribution of X
 - Returns a higher reconstruction error otherwise

VAE-based AD

- Premise for AD
 - For learned $\phi, heta : \hat{x}^{(i)}$ is similar to $x^{(i)}$ but only if $x^{(i)}$ is derived from P(X)
 - Similarity defined in terms of a reconstruction probability

$$P(x^{(i)}) \leftarrow \frac{1}{L} \sum_{l=1}^{L} P(x^{(i,l)}; \mu_{\hat{x}^{(i,l)}}, \sigma_{\hat{x}^{(i,l)}}^2)$$

Dataset

Results i/ii

Dataset / AUC ROC	KPCA	VAE*
Android AD (calllog)	0.708	0.694
Android AD (HPROF)	0.69	0.712
NSL-KDD (DoS)	0.59	0.795
NSL-KDD (Probe)	0.821	0.944
NSL-KDD (R2L)	0.712	0.777
NSL-KDD (U2R)	0.712	0.782

- Successful re-purposing from network AD (An & Cho, 2015)
 - Note: Probe is particularly noisy on the network level
- KPCA-HPROF
 - F1/recall/pres **0.88/0.97/0.8**
 - *Note 1*: 0.2 imprecision results in benign apps being sent for malware triage, rather than apps being immediately flagged as malicious
 - Note 2: 0.03 non-recalled malware could in reality be offset by considering multiple execution samples in a multi-device deployment setting

12| * Android AD topology: 50-25-2/NLL_{Gaussian}

Results ii/ii

Digging deeper into Android AD using HPROF
Latent spaces KPCA vs VAE

Conclusion and Next steps

- We have shown that KPCA & VAE can work for Android AD
- The process memory approach is promising, and which in turn is conducive to practical implementation
- Planned experimental improvements
 - App behavior representation: timely memory dumps
 - A meet-in-the middle with sys call traces
 - AD modeling
 - VAE Supervised learning: a loss function that pushes the latent distribution away from labeled anomalies
- Closing the loop
 - Generate anomalous execution traces for malware sandbox triage to use
 - Static app re-writing to mark decision points close to entry point, and handler code
 - Direct sandbox execution accordingly

Q&A

Mark.Vella@um.edu.mt

